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A B S T R A C T

Progressive training has unfolded its superiority on a wide range of downstream tasks. However, it may fail in
fine-grained recognition (FGR) due to special challenges with high intra-class and low inter-class variances. In
this paper, we propose an active self-pace learning method to exploit the full potential of progressive training
strategy in FGR. The key innovation of our design is to integrate submodular optimization and self-pace
learning into a maximum–minimum optimization framework. The submodular optimization is regarded as a
dynamic regularization to select active sample groups in each training round for restricting the search space of
self-pace optimization. This can overcome the limitation of traditional self-pace learning that is easily trapped
into local minimums when facing challenging samples. Extensive experiments on three public FGR datasets
show that the proposed method can win at least 1.5% performance gain in various kinds of network backbones
including swin-transformer.
1. Introduction

Fine-grained recognition (FGR) has been highly regarded in re-
cent years due to its practical purpose to distinguish between similar
subcategories. Related works have been successfully applied to intelli-
gent driving and retail product, etc. Different from traditional image
recognition tasks, FGR requires the classification model to discriminate
subtle difference with small clue [1–4]. It is a tough problem because
the natural occlusion and observation angle may cover the implicit
but key target regions. With the rapid development of deep learning
technology, FGR has made significant progress. This gives credit to the
design of network structure that can simultaneously locate and repre-
sent the discriminative target sub-regions by image labels. In practical
terms, apart from the network structures, a well-designed progressive
training strategy also can significantly enhance the accuracy of the FGR
model. Unfortunately, few works have done it well.

Curriculum learning (CL) is the representative method for progres-
sive training. A typical framework of curriculum learning is composed
of two separated components [5]: the difficulty measurer and the
training scheduler. Difficulty measurer is aimed to employ the dif-
ficulty function to rank training samples. While training scheduler
focuses on designing the training strategies to divide ranking results
into appropriate training batches. Introducing curriculum learning in
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FGR will be conducive to the location of target details because the
process of ordering training samples can encourage the network to
locate discriminative information from coarse to fine-grained level. This
is actually to imitate the child’s behavior in the image cognition course,
where children are asked to focus on the image details progressively.
Although CL is a promising work in FGR, it will face special challenges
such as shown in Fig. 1, e.g. intra-class samples may contain targets
in various growth stages. The appearance of adults and nestlings is
totally different. By contrast, differences between similar classes may
be subtle. In this case, FGR involves high intra-class variance and small
inter-class variance. Traditional curriculum learning methods quantify
each sample as an independent entity. If they are adopted directly
in FGR, the difficulty scores of different samples are very close (see
Fig. 1(a)). This indicates that treating samples as independent entities
cannot fully encourage the superiority of CL. Few curriculum learning
works have been successfully employed in FGVC task. Although some
works [6–8] study the progressive training of FGVC, their focus is the
training strategies, not including ranking the training samples.

In fact, examples such as ‘‘adult-nestling birds‘‘ and ‘‘Laysan-Sooty’’
have not existed all over the category. This means that the inter
and intra relations among category subsets are varied. Based on this
observation, we do not distinguish the difficulty of individual samples.
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Fig. 1. Comparing the difference between the traditional course learning method and our method.
Instead, we integrate multiple category subsets together as the basic
group to quantify group difficulty. According to group difficulty, we
propose an active self-pace learning method for FGR. The central
insight comes from an intuition: progressive training is actually the
process that iteratively selects active samples to linearly decreases
the uncertainty of category prediction. If the combination of category
subsets with irregular sample variance can be quantified, the process
of category combination is submodular. Exploiting the submodularity
can provide a near-optimal yet economic solution to rank groups from
easy to hard for active sample selection. Following above discussion, we
model the combination of category subsets as a submodular optimiza-
tion problem. From Fig. 1(b), we can see submodular optimization is
able to properly quantify the difficulty levels of category subsets. Those
samples within easy groups are more active than hard groups. Under
our problem formulation, we build a collaborated maximum–minimum
optimization framework that integrates self-pace learning and submod-
ular optimization into a close union. The main contributions of the
proposed method are listed as follows:

(1) We thoroughly analyze the limitations of traditional curriculum
learning in FGR and propose a submodular optimization model for
ranking category subsets. The key innovation of our model relies on
that we are the first to exploit the submodularity for active sample
selection. Based on our problem formulation, the optimal category
subsets can be progressively selected to obtain steady cumulative gain.

(2) To effectively train the FGR networks, we combine submod-
ular optimization with self-pace learning to generate a collaborated
maximum–minimum optimization framework. The constructed frame-
work can achieve smooth and stable progressive learning through using
active samples to restrict the search space of self-pace optimization.

(3) The proposed collaborated optimization framework can be de-
ployed on various types of FGR networks. Extensive experiments on
three fine-grained recognition datasets can verify the superiority of
progressive training, where the averaged recognition gain surpasses
1.5%.

It is worth mentioning that in our previous work [9], we are the
first to introduce submodular optimization in progressive training.
Moreover, we also verify that the submodular optimization is robust
to the challenge of FGR. The main differences between this paper
and [9] are summarized as follows: Firstly, we introduce submodular
optimization into self-pace learning process to make full advantage
of both optimizations. In comparison, the work in [9] only uses sub-
modular optimization to achieve progressive training. Secondly, since
2

a collaborated optimization problem is formulated in this paper, we
propose an iterative conditional sampling method to solve the problem.
Finally, we conduct more extensive experiments in this paper to verify
the generality of our method. It should be noted that we consider the
optimization model formulated in the conference version as a dynamic
regularization in the proposed collaborated optimization framework
of this journal version. The main advantage of this design is that we
introduce submodular optimization in the process of training process.
We do not use submodular optimization to predefine the difficulty of
different sub-classes as conference version. The proposed method in this
paper is actually to integrate difficulty measurer and training scheduler
into a joint optimization framework.

2. Related work

2.1. Fine-grained recognition

The current FGR is weakly supervised. Relevant research mainly
falls into attention-based [10–12], sampling-based [13], graph-based
[14–16], and transformer based methods [17]. The ACNet model [18]
was a classic attention-based model that realized feature extraction
and classification through an attention-based convolutional binary tree
structure. This can force the model to capture multi-scale fine-grained
features. In those sampling-based methods, the S3N network [19]
captured peaks (local maxima) by sampling from the class response
map for contextual information. The GaRD model [20] can effectively
adopt a graph to obtain high-order contextual. The TransFG model [21]
was the first work to apply the Transformer model to FGR. This model
can use a part selection module to select image blocks containing
fine-grained information, enhancing the accuracy gain. Aforementioned
SOTA methods focus on network design, few works seriously study the
role of the training strategy.

2.2. Curriculum learning

The automatic method is the research focus in current course
learning. Related works can be roughly divided into three categories:
self-pace learning based methods, teacher transfer-based methods and
teacher reinforcement-based methods. Self-pace learning-based meth-
ods aim to let the model measure the difficulty of the training samples
according to their own loss. For example, the work [22] used the con-
cept of ‘‘contrast course’’ to divide the training samples into multiple
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Fig. 2. Illustrating problem formulation on submodular optimization based category grouping.
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stages. The work [23] distinguished the difficulty of samples according
to the accuracy of centerline detection. Teacher transfer-based methods
mainly use pre-trained models to measure the difficulty of samples.
Representative works such as [24] defined the network to be trained
as a student network. The confidence of student network samples was
evaluated by the pre-trained teacher network combined with transfer
learning strategy. The teacher reinforcement-based methods regard
the network to be trained as a teacher, and performs dynamic data
selection according to the feedback of students. Representative works
such as [25] made the teacher network gradually adapt to more com-
plex tasks with the assistance of feedback from the student network.
In addition to the aforementioned works, methods such as Bayesian
optimization, meta-learning, and hypernetworks are also introduced in
the course learning to assist in the definition of difficult samples [26].

2.3. Submodular optimization

Submodular optimization problems require different constraints ac-
cording to different scenarios. According to the constraints, submodular
optimization can be divided into: cardinality constraint, knapsack con-
straint, and matroid constraint solutions. In cardinality constraints,
the representative work [27] extended the maximization of the sub-
modular function into a monotone submodular maximization problem
for increasing the search space and convergence speed. The submod-
ular maximization under the knapsack constraint requires finding the
largest subset that satisfies the constraint. The representative work [28]
used the gradient descent method to maximize the monotone sub-
modular function. This can guarantee the theoretical upper bound
of the approximation ratio. Literature [29] proposed a constrained
submodule maximization algorithm GLS (Greedy Local Search). The
algorithm solved the constrained submodular maximization problem
by decomposing the constrained set into multiple small feasible sub-
sets. Submodular maximization under matroid constraints maximized
the value of the submodular function under the greedy process [30].

3. Submodular optimization based category grouping

As it is shown in Fig. 2, the problem formulation on submodular
optimization based category grouping contains two steps: designing the
difficulty score firstly and then building the submodular optimization
model. Next, we will give a detailed discussion of two steps.

3.1. Submodular optimization background

Submodular optimization is a combinatorial optimization theory
that utilizes submodularity for subset selection. Submodularity is de-
fined as follows: given a finite set 𝐕 = {1, 2,… , 𝑛}, a subset selection
unction 𝑓 is submodular if the marginal gain decreases as the subset
ncreases

𝑓 (𝐴 ∪ {𝑢}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑢}) − 𝑓 (𝐵), 𝐴 ∈ 𝐵 ∈ 𝑉 𝑎𝑛𝑑 𝑢 ∉ 𝐵. (1)
3

Fig. 3. A graphical explanation of the concept of submodularity.

Fig. 3 explains the meaning of Eq. (1). In Fig. 3(a), if a subset 𝐷′

is added to the set {𝐷1}, the enlarged area (excluding the overlapping
arts) can be represented as 𝐴. As a comparison, in Fig. 3(b), if we
dd 𝐷′ to the set {𝐷1, 𝐷2}, the enlarged area 𝐵 is obviously smaller
han 𝐴. Based on the above explanation, submodularity means: the
enefits generated by new subset (e.g., the newly added area in the
igure) linearly decrease as the number of subsets increases. Submodu-
ar optimization can use submodularity to rank the subset combination
esults by evaluating the cumulative benefit of a series of candidates.
n general, the submodular optimization with a cardinality parameter
(i.e., number of subsets) is formulated as Eq. (2), where 𝐷 represents

he selected subset
max

𝐷⊂𝑉 ,∣𝐷∣=𝑘
𝑓 (𝐷). (2)

.2. Difficulty score

The difficulty score is the basis to design the subset selection func-
ion 𝑓 in submodular optimization theory. The group with low diffi-
ulty score means samples within this group are more active than hard
roups. The definition of difficulty score involves challenging factors
uch as target pose variation and severe occlusion/background clutter.
n addition to traditional challenging factors, there exist additional
hallenging factors: large intra-class variance and small inter-class vari-
nce in FGR. Large intra-class variance and small inter-class variance
n category subsets imply an irregular sample variance. The Fisher cri-
erion is a classic indicator that can be used to quantify the uncertainty
f recognition accuracy according to the distribution of intra-class and
nter-class variances. Inspired by this idea, we design a difficulty score,
amely Group Difficulty Indicator (𝐺𝐷𝐼) for evaluating the combina-
ion of category subsets. The designed 𝐺𝐷𝐼 is described as follows:

𝐺𝐷𝐼 = 𝐴𝑣𝑒_𝑖𝑛𝑡𝑒𝑟
𝐴𝑣𝑒_𝑖𝑛𝑡𝑟𝑎 . (3)

The numerator 𝐴𝑣𝑒_𝑖𝑛𝑡𝑒𝑟, is defined as the average inter-class simi-
larity between a particular class and other classes. While the denomi-
nator 𝐴𝑣𝑒_𝑖𝑛𝑡𝑟𝑎, is defined as the average intra-class similarity within
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a particular class. Choosing 𝐴𝑣𝑒_𝑖𝑛𝑡𝑒𝑟 as the numerator means that
f there is significant inter-class variation between certain category
ubsets, a higher 𝐴𝑣𝑒_𝑖𝑛𝑡𝑒𝑟 value can indicate a higher 𝐺𝐷𝐼 score.
imilarly, if certain category subsets have low intra-class similarity, the
𝐷𝐼 score can also be increased by reducing the value of 𝐴𝑣𝑒_𝑖𝑛𝑡𝑟𝑎.

Based on Eq. (3), the designed difficulty score can distinguish between
category subsets with large intra-class and small inter-class variance.

3.3. Submodular optimization based grouping

The submodular optimization model constructed based on Eq. (3) is

𝑓 (𝐷, 𝜆) = max
∣𝐷∣=𝑚

1
∣ 𝐷 ∣ ⋅ ∣ 𝑆 ∣

∑

𝐗𝑖∈𝐷,𝐗𝑗∈𝑆
ℎ(𝐗𝑖,𝐗𝑗 )

−𝜆 1
∣ 𝐷 ∣

∑

𝑘,𝑚∈𝑋𝑖

2
∣ 𝐗𝑖 ∣ ⋅(∣ 𝐗𝑖 ∣ −1)

ℎ(𝐱𝑘𝑖 , 𝐱
𝑚
𝑗 ),

(4)

where 𝐷 denotes the set of candidate categories to be selected, and
𝑆 denotes the set of categories that are similar to 𝐷. Let 𝑓 be the
subset selection function that meets submodularity. 𝐗𝑖 denotes the 𝑖th
category in the dataset, 𝐗𝑖 = [𝐱1𝑖 ,… , 𝐱𝑘𝑖 ,… , 𝐱𝑛𝑖 ], 𝑛 denotes the number
of samples in category 𝐗𝑖, 𝐗𝑗 represent the 𝑗th category. ∣ 𝐷 ∣= 𝑚 is a
cardinality constraint that selects 𝑚 categories. In Eq. (4), ℎ(⋅) denotes
a similarity metric function, where ℎ(𝐗𝑖,𝐗𝑗 ) measures the similarity
between two categories, and ℎ(𝐱𝑘𝑖 , 𝐱

𝑛
𝑖 ) measures the similarity between

two samples 𝐱𝑘𝑖 and 𝐱𝑛𝑖 within the 𝑖th category. The parameter 𝜆 ≥ 0
balances the importance of intra-class and inter-class similarity. It can
be seen that Eq. (4) is actually to select the category subset 𝐷 by
optimizing the difficulty score, gradually combining category subsets
according to the sample variance of intra-class and inter-class.

4. Collaborated optimization for progressive learning

4.1. The collaborated optimization framework

Inspired by multi-objective optimization theory, the collaborated
maximum–minimum optimization framework is described as

min
𝐰

∑

𝐗𝑖∈𝐷
𝑒𝑐[𝐱𝑖] ⋅ 𝑅(𝑦𝑖, 𝐿(𝐱𝑖,𝐰)) +

𝑑
∑

𝑖=1
𝑐[𝐱𝑖],

𝑠.𝑡.max
∣𝐷∣=𝑚

1
∣ 𝐷 ∣ ⋅ ∣ 𝑆 ∣

∑

𝐗𝑖∈𝐷,𝐗𝑗∈𝑆
ℎ(𝐗𝑖,𝐗𝑗 ) − 𝜆 1

∣ 𝐷 ∣
∑

𝑘,𝑚∈𝐗𝑖

2
∣ 𝐗𝑖 ∣ ⋅(∣ 𝐗𝑖 ∣ −1)

ℎ(𝐱𝑘𝑖 , 𝐱
𝑚
𝑗 )

(5)

with

𝑐[𝐱𝑖] =
⎧

⎪

⎨

⎪

⎩

1, if 𝑅(𝑦𝑖, 𝐿(𝐱𝑖, 𝑤)) < 𝜑

0, if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

where 𝐱𝑖 and 𝑦𝑖 indicates the 𝑖th sample and its corresponding label. 𝐿(𝐱𝑖,𝐰)
represents the category prediction loss in the fine-grained recognition net-
work, 𝑅(⋅) represents the MSE function, 𝑐[𝐱𝑖] represents the indicate function
indicating whether the sample is selected. The specific expression of indicate
function is shown in Eq. (6). Eq. (5) actually combines self-pace learning with
submodular optimization to form a collaborated optimization framework. The
motivation of this design is to make full use of two optimizations.

Specifically, the advantage of self-pace learning lies in that it can progres-
sively evaluate the training samples through using feedback of the network
loss to select the next round training subsets. However, the limitations of
self-pace learning are two-folds: (1) the sample selection closely relies on the
category loss. This may cause overfitting because it cannot fully exploit the
prior knowledge of category similarity; (2) it will involve high computational
complexity due to the global search. To solve those problems, Eq. (5) defines
submodular optimization as a dynamic regularization. The self-pace learning
is established as the basis for arranging samples within groups. At this
point, the submodular optimization can restrict a fine-grained search range
4

to avoid the optimization of self-pace learning trapping into local minimums.
Moreover, submodular optimization can also transfer the prior knowledge of
closely related categories to self-pace learning.

4.2. Optimization method

In the collaborated optimization model (see Eq. (5)), the key step is the
self-pace learning-based objective function for fine-grained network training.
Alternative Conditional Sampling (ACS) is a classic iterative optimization
method that keeps a set of variables fixed and solves for another set of
variables in each iteration. Here, we adopt the ACS strategy to solve the
optimization problem in Eq. (5). The specific updating strategy is as follows:

Updating the subset of classified samples 𝐃: the category subset is
obtained by minimizing Eq. (4). Inspired by [31], we propose a random
greedy algorithm that can achieve an approximation of 1

𝑒
for non-monotonic

objective functions. The optimization function is as follows:

max𝐷𝑓 (𝐷, 𝜆). (7)

Updating Weight Metric 𝐜[𝐱𝐢]: This step is obtained by calculating the
partial derivative of Eq. (5), as shown in Eq. (7). Since 𝑐[𝐱𝑖] ∈ [0, 1], we
an obtain a closed-form optimal solution for 𝑐[𝐱𝑖], shown in Eq. (9). The
eaning of this solution is that: when the training loss of the fine-grained
etwork𝐿(𝑦𝑖, 𝑔(𝐱𝑖, 𝑤)) for the k-𝑡ℎ epoch is less than the threshold 𝜑, it can be
onsidered as a selectable sample. Otherwise, it should not be given priority
or selection. As the model training iterates, the threshold 𝜑 will increase.

The updating step of 𝐜[𝐱𝐢] are as follows:
𝜕𝐸

𝜕𝑐[𝐱𝑖]
= 𝑐[𝐱𝑖] ⋅ 𝑒𝑐[𝐱𝑖] ⋅ .𝐿(𝑦𝑖, 𝑔(𝐱𝑖,𝐰)) (8)

Then

𝑐[𝑥𝑖] =

⎧

⎪

⎨

⎪

⎩

1, if 𝑅(𝑦𝑖, 𝐿(𝐱𝑖,𝐰)) < 𝜑

0, if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9)

Updating parameter 𝐰: When the selected subset 𝐷 and the metric
unction 𝑐[𝐱𝑖] are fixed, the classification weight 𝐰 for fully connected layer
f fine-grained recognition network can be updated by:

𝐰 = 𝑚𝑖𝑛𝐸(𝐰, 𝜑) = argmin
𝐰

∑

𝐱𝑖∈𝐷
𝑒𝑐[𝐱𝑖] ⋅ 𝐿(𝑦𝑖, 𝑔(𝐱𝑖,𝐰)). (10)

Algorithm 1: Optimization algorithm for Eq. (5)
Input: Training dataset 𝑁 , initial step sizes 𝜑 and 𝛽
Output: Network parameters 𝜃

1 Initialize model parameters w
2 while the model has not converged, execute the outer loop do
3 while the model has not converged, execute the inner loop do
4 Initialize the set of difficult instances 𝐷0 ← ∅;
5 for 𝑖 = 1 to 𝑚 do
6 𝑀𝑖 ⊂ 𝑁∖𝐷𝑖−1, 𝑀𝑖 is a subset of size 𝑚 that

maximizes ∑

𝜇∈𝑀 ℎ(𝜇 ∪𝐷𝑖−1) − ℎ(𝐷𝑖−1).
7 Randomly select an element 𝑢𝑖 from 𝑀𝑖 with a

non-uniform distribution.
8 Let 𝐷𝑖 ← 𝐷𝑖 + 𝑢𝑖
9 Obtain the set of easy instances 𝐷 at the current

state.
10 Update the feedback indicator 𝑐 using Eq. (9).
11 Update the classification weight w using Eq. (10).
12 end
3 end
4 𝜑 ← 𝜑 + 𝛽;
5 end
6 return 𝜃∗ = 𝜃;

The detailed optimization process is shown in Algorithm 1 and includes an
inner loop and an outer loop. In the inner loop, a subset 𝐷 is obtained through
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Fig. 4. Training framework.
a random greedy algorithm, and the variables 𝑐 are iteratively updated by
Eq. (9). After updating 𝑐, the subset 𝐷 and variables 𝑐 are fixed to update
the classification weight using Eq. (10). In the outer loop, more samples
are gradually added to update the fine-grained backbones. In each training
epoch, the classification losses are compared with a threshold, and only easily
trainable samples with small loss will be reserved. As 𝜑 increases, more
samples with bigger losses (i.e., relatively difficult samples) are gradually
added to train the network. The speed parameter 𝜑𝑢 increases continuously
through the self-increment indicator 𝛽 until the model converges.

4.3. Progressive training strategy

The progressive training strategy is shown in Fig. 4, where the proposed
collaborated optimization model (Eq. (5)) is first to select category subset
𝐷 for generating image batch for the 𝑘th training round of FGR networks.
Then, each image in subset 𝐷 is further evaluated through updating the
self-pace optimization. This is aimed to discard those images with low
contribution to the fast convergence of training loss 𝐿(𝑦𝑖, 𝑔(𝐱𝑖, 𝑤)). In fact, the
samples in the selected category subsets are limited, this may make self-pace
optimization trapped into local minimal. To overcome this limitation, we refer
to incremental learning to adopt a simple yet efficient manner: keeping the
category subsets in prior training rounds during self-pace optimization. This
can make the network exploit the previous knowledge to adjust the gradient.
Repeating the training round, the FGR network can be progressively trained.
It should be noted that, the progressive training strategy can not only be
used in convolutional neural backbone, but also can be used for transformer
backbones. Detailed discussion is shown in the experiments.

4.4. Algorithm discussion

Convergence analysis: In the procedure shown in Algorithm 1. The entire
optimization is based on the ACS (Alternating Convex Search) framework. In
the framework, the core optimization objective function is step 11, which is
nonconvex. This step is optimized by stochastic gradient descent, which has
been proven in deep learning that can give fast convergence. In addition to
step 11, Eq. (5) is not a convex function. It has been proven in paper [31]
that the local optimum can be reached by using a random greedy algorithm
to solve the submodular optimization function, thus Eq. (5) can give conver-
gence. Besides the above two steps, other steps are converged, thus Algorithm
1 can ensure convergence and find the local optimal solution.

Computational complexity: Here, we refer to [32] to define the time
complexity of the recognition network as 𝑂(𝐹 𝑙𝑜𝑝𝑠), where Flops means the
floating-point operations of the network forward procedure. The main com-
putational complexity of our method relies on the iteration of ACS method. In
5

Algorithm 1, step 11 is the key point, its computational complexity is 𝑂(𝑛𝑚),
where m is the number of samples in a batch and n is the iterations. The total
computational complexity is 𝑂(𝑛 × 𝑚 × 𝐹 𝑙𝑜𝑝𝑠). Taking CUB-200-2011 dataset
as an example, the iteration of Algorithm 1 is 8. Detailed experiment result
please see Section 5.3.

5. Experimental analysis

To fully validate the effectiveness of the proposed optimization model, we
carry out experiments from two aspects: quantitative analysis and qualitative
analysis. First, quantitative analysis will be conducted on the CUB-200-
2011 [33], Stanford Dogs [30], Stanford Cars [34] and iNaturalist 2017 [35]
datasets. Qualitative analysis will be performed on the heat map during
training process to show whether our progressive training can give a strong
support to locate the fine-grained discriminative regions.

This analysis will be divided into three parts: evaluating the perfor-
mance of the proposed method on various fine-grained recognition models,
discussing the model parameters, and comparing models with and without
feedback to verify the feasibility of the feedback-based model. Second,
qualitative analysis will be performed on the proposed method. Through
visualization of feature maps, the key features of fine-grained images will be
intuitively analyzed to determine whether the proposed method can capture
them effectively.

5.1. Experimental setup

The batch size was set to 64, and the SGD optimizer with momentum
0.9 was selected to optimize the classifier. The experiments are conducted
using Python on four Nvidia Tesla P100 GPUs. In the experiment, the CUB-
200-2011 dataset contains 11,788 images, of which 5994 were used for
training and the rest were used for testing. The Stanford Dogs dataset contains
20,580 images, of which 12,000 images were used for training and the rest
were used for testing. Similarly, The Stanford Cars dataset contains 16,182
images, 8041 images are used for testing. To ensure fair comparison, the
datasets were preprocessed by resizing the input images to 600*600 and then
cropping them to 448*448, which is suitable for both CUB-200-2011 and
Stanford Dogs datasets. During training, random cropping was used while
center cropping was used during testing. The initial learning rate was set to
0.01 for CUB-200-2011 and 0.003 for Stanford Dogs.

5.2. Quantitative analysis

The experimental results are shown in Table 1. From Table 1, in CUB-

200-2011 datasets, it is clear that it gives a performance gain over 2% when
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Table 1
Overall performance on three public datasets.

Method BaseModel CUB-200–2011 Stanford Dogs Stanford Cars

w/o w w/o w w/o w
(%) (%) (%) (%) (%) (%)

VGG16 [36] – 73.40 76.21 68.32 71.11 82.12 85.23
ResNet50 [37] – 82.39 85.40 84.69 86.90 90.11 92.28
DesNet121 [38] – 80.79 83.21 79.91 82.13 88.08 90.27
CPM [39] ResNet-50 86.55 89.64 79.94 81.25 90.12 91.29
S3N [40] ResNet-50 87.45 90.12 87.62 89.02 93.63 94.98
DCL [41] ResNet-101 86.82 88.23 89.10 91.23 91.89 92.34
CIN [42] ResNet-101 86.34 90.76 86.98 89.12 94.22 96.23
PMG [43] ResNet-50 88.71 91.23 88.13 90.89 94.34 95.89
SnapMix [44] ResNet-101 90.12 92.17 88.32 89.29 92.12 93.46
SEF [45] ResNet-101 87.32 89.23 88.65 89.04 93.19 94.67
TransFG [46] VIT-B_16 91.89 92.53 90.18 90.79 94.31 96.57
ViT [47] VIT-B_16 91.62 92.55 91.14 92.02 93.21 95.28
Swin [46] Swin-S_16 91.81 92.65 92.52 92.98 94.28 96.46
SIM-Trans [48] VIT-B_16 91.84 92.79 92.48 93.33 94.39 95.43
IELT [49] VIT-B_16 91.81 92.01 91.84 92.56 95.62 95.91
ViT-NeT [50] SwinT-B_16 91.60 92.02 90.03 90.22 95.00 95.78

Table 2
Experiments on iNaturalist 2017.

Method Backbone w/o w

TransFG VIT-B 16 71.6 71.9
SIM-Trans VIT-B 16 69.9 70.8

Fig. 5. The experiment on parameter setting. The backbone is Swin.

adding the proposed progressive training method to FGR methods. Besides
FGR model, our progressive training method also gives an obvious accuracy
gain (surpass 1.5%) on general network structures such as Swin and Resnet.
The experiments on Stanford Dogs and Stanford Cars can also validate the
superiority of our progressive training method. Especially in Stanford Cars
dataset, the performance averaged accuracy gain surpass 2.5%

Here, we also carry out an experiment on iNaturalist 2017. The testing
result is shown in Table 2 below. From this test we can see that our method
can win 1.2% performance gain in SIM-Trans. The token selection strategy in
TransFG will eliminate a large number of tokens in the challenging samples,
narrowing the gap between difficult and ordinary sub-classes, thus the per-
formance gain obtained by ranking the difficult groups is not as obvious as
related works. Moreover, the comparison between previous conference and
current works is shown in Table 3.

5.3. Efficiency of the collaborated optimization model

Discussion on the parameter setting: In this section, we will discuss
6

he parameter setting of the proposed collaborated optimization model. r
Fig. 6. Testing the efficiency of the difficulty score. The proposed submodular
optimization is derived from group difficulty indicator (GDI). As GDI decreases, the
averaged accuracy of the selected group gradually increases, indicating that the
proposed submodular optimization can give a reasonable ranking result.

Fig. 7. Comparative results of ablation experiments.

Specifically, the parameter 𝜆 is an important parameter in Eq. (5), thus we
test the recognition accuracy with 𝜆 range [0.01,10]. To give a more confident
result, we carry out parameter testing on three datasets, the results are shown
in Fig. 5. From Fig. 5 we could clearly see that the proposed collaborated
optimization model can give the highest recognition accuracy when 𝜆 is set
as 1.1. Setting 𝜆 too small will limit the intra-class diversity in the model,
making the submodular optimization hardly obtain the optimal combination
of sample subsets. On the other hand, setting 𝜆 too big causes the model
to only concentrate on intra-class diversity and ignore inter-class diversity.
Three dataset gives similar results, which means parameter 𝜆 is not sensitive
to different datasets.

Efficiency of the difficulty score: Submodular optimization is the core in
ur collaborated optimization model. In this part, we will show the efficiency
f the difficulty score. Specifically, it has been verified in curriculum learning
hat the uncertainty of image is proportional to the value of CNN loss
unction. This means that the accuracy of testing model can be considered
s an indicator to test the ranking results. Based on this observation, we use
he proposed submodular optimization to rank the groups, the pre-trained
esNet50 is used to calculate the averaged accuracy of different groups. From
ig. 6 we could clearly see that the averaged group recognition accuracy
ollows an increasing trend, which can verify the efficiency of group ranking
esult.



Pattern Recognition 156 (2024) 110849B. Kang et al.

F
T

p
w
i

5

o
p
o
c
t
d
t
3

Table 3
Comparison between previous conference and current works.

Method CUB-200–2011 Stanford Dogs Stanford Cars

w/o strategy(%) w strategy(%) w/o strategy(%) w strategy(%) w/o strategy(%) w strategy(%)

Conference Journal Conference Journal Conference Journal

TransFG 91.89 92.00 92.53 90.18 90.47 90.79 94.31 95.23 96.57
Vit 91.62 91.82 92.55 91.14 91.31 92.02 93.21 94.35 95.28
Swin 91.81 92.06 92.65 92.52 92.38 92.98 94.28 94.29 96.46
ig. 8. Grad-CAM results. (a) and (d) are the original images, (b) and (c) are the Grad-CAM of TransFG after 30th and 80th epochs. Similarly, (e) and (f) are the Grad-CAM of
ransFG with our progressive training method after 30th and 80th epochs.
4
a
t
s
a
s
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Computation complexity: In this test, we show the computation com-
lexity when adding our training method in the FGR models. From Table 4
e could clearly see that the proposed progressive training method does not

nvolve high computation complexity.

.4. Ablation experiment

In the proposed collaborated optimization model, the filtered dataset 𝐷 is
btained through submodular optimization, and then further filtered by self-
ace optimization to achieve progressive training. To explore the effectiveness
f submodular and self-pace optimization, an ablation experiment will be
onducted by removing the effect of certain optimization functions to verify
heir necessity (detailed setting please see Table 5). Specifically, we give four
ifferent settings: setting 1 with self-pace and submodular optimizations, set-
ing 2 with self-pace optimization but no submodular optimization, setting

with submodular optimization but no self-pace optimization, and setting
7

w

without both. The experimental results are shown in Fig. 7. Although the
ccuracy of setting 4 increase rapidly in the first few rounds, it has a lower
raining accuracy and slower convergence speed compared to the other three
ettings in the subsequent training process. Moreover, setting 1 has higher
ccuracy and fast convergence rate than settings 2 and 3. In conclusion,
ubmodular optimization and feedback are beneficial for model training, and
he combination of the two conditions is more effective than using them
eparately.

.5. Qualitative analysis

Grad-CAM is an effective visualization tool in the field of deep learning,
hich can visualize the image blocks that the deep learning model focuses
n. Here, we adopt this tool to demonstrate that our method can provide
trong support to the FGR method in concentrating on discriminative regions
ith clear semantic meaning. In Fig. 8, we present the Grad-CAM results of
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Table 4
The experiment for testing computation complexity.

Backbone Collaborated optimization Flops

swin w/o 30.26
swin w 49.21
TransFG w/o 53.78
TransFG w 64.32

Table 5
The explanation of ablation setting.

Ablation setting

Backbone Self-pace Submodular Annotation

Yes Yes Yes Setting 1
Yes Yes No Setting 2
Yes No Yes Setting 3
Yes No No Setting 4

two methods: the API-NET network without any specific training strategies
and the API-NET network with our training methods. We randomly select
four bird images for visualization, where the first and fourth columns show
the original images, and the second and third columns display the heat maps
generated after 30 and 80 rounds of training, respectively.

The first four lines are the samples of easy sub-classes. While the last
three lines are the samples of difficult sub-classes. Since there exists a high
inter-class variance in easy sub-classes, the Grad-CAM of our method is
not obviously different from the original API-NET. Original API-NET has
strong capability to discriminate easy sub-classes. In difficult sub-classes,
our method shows a significant advantage. This mainly contributes to the
performance gain. Specifically, our method uses easy groups to train the
network before 30th epochs. The attention of our method can cover all of
the saliency sub-regions. This indicates a certain generalization capability.
However, some background information may also be involved. Further train-
ing the challenging sub-classes, attention focus on a small sub-regions and the
invalid background interference can be alleviated. In comparison, the original
API-NET could not alleviate the background interference.

6. Conclusion

In this paper, we propose to integrate the submodular optimization and
the self-pace learning into a maximum–minimum optimization framework,
which uses active groups to dynamically regulate self-pace learning. This can
progressively guide the training process in challenging scenarios. Extensive
experiments have shown that our method can be extended to various fine-
grained recognition models and SOTA transformers with prominent accuracy
enhancement.
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